Code: 20EC3501

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2024

DIGITAL COMMUNICATIONS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks			
UNIT-I								
1	a)	Explain about functional description of	L2	CO1	7 M			
		Digital Communication system with neat						
		sketches.						
	b)	In a Binary PCM system, the output signal	L3	CO1	7 M			
		to quantization noise ratio is to be held at						
		40dB. Then determine the no. of required						
		levels and also determine output signal to						
		quantization noise ratio.						
OR								
2	a)	Summarize about A-Law and µ-Law	L2	CO1	7 M			
		Companding.						
	b)	Outline about ADM with neat sketches.	L2	CO1	7 M			

UNIT-II								
3	a)	Explain about Coherent detection of FSK	L2	CO1	7 M			
		with neat sketches.						
	b)	The bitstream 1011100111 is to be	L5	CO1	7 M			
		transmitted using DPSK. Then Determine						
		encoded and transmitted phase sequence						
		along with the received output.						
OR								
4	a)	Analyze the working of M-ary signaling.	L4	CO1	7 M			
	b)	Explain about QPSK with neat sketches.	L2	CO1	7 M			
	T	UNIT-III	.	, ,				
5	a)	What is the Need of spread spectrum	L1	CO2	7 M			
		modulation?						
	b)	Analyze about DSSS with neat sketches.	L4	CO2	7 M			
		OR						
6	Sur	nmarize about the Tx and Rx of FHSS with	L2	CO2	14 M			
	nea	t diagrams.						
7		UNIT-IV	1.5	CO2	7 1/			
7	a)	Determine the expressions of Joint and	L5	CO3	7 M			
	1. \	Conditional entropies.	1.2	CO2	7 1 1			
	b)	Explain about Shannon Hartley theorem.	L2	CO3	7 M			
OR								
8	a)	Prove that $I(X, Y) = H(X) - H(X/Y)$.	L2	CO3	7 M			
		Page 2 of 3						

	b)	Determine the Huffman code for the following messages with probabilities 0.3, 0.2, 0.15, 0.15, 0.1 and 0.1. Find the coding efficiency and redundancy.	L5	CO3	7 M			
	UNIT-V							
9	a)	Determine the generator and Parity check	L5	CO4	7 M			
		matrices for a (6,3) LBC code.						
	b)	For a (7,4) Convolution code, g1=1+X,	L5	CO4	7 M			
		g2=1+X ² , then determine the Encoded						
		outputs for the sequence 1100 and verify						
		these output states with tree diagram.						
OR								
10	Des	sign and verify the Convolutional encoder	L6	CO4	14 M			
	with two flip-flops, code rate =1/2 with input							
	message 11011101.							
	The	en design and explain						
	1.	The Encoder diagram						
	2.	The Tree diagram						
	3.	The Trellis diagram						
	4.	The State diagram						